36 research outputs found

    Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization

    Full text link
    The Schatten-p quasi-norm (0<p<1)(0<p<1) is usually used to replace the standard nuclear norm in order to approximate the rank function more accurately. However, existing Schatten-p quasi-norm minimization algorithms involve singular value decomposition (SVD) or eigenvalue decomposition (EVD) in each iteration, and thus may become very slow and impractical for large-scale problems. In this paper, we first define two tractable Schatten quasi-norms, i.e., the Frobenius/nuclear hybrid and bi-nuclear quasi-norms, and then prove that they are in essence the Schatten-2/3 and 1/2 quasi-norms, respectively, which lead to the design of very efficient algorithms that only need to update two much smaller factor matrices. We also design two efficient proximal alternating linearized minimization algorithms for solving representative matrix completion problems. Finally, we provide the global convergence and performance guarantees for our algorithms, which have better convergence properties than existing algorithms. Experimental results on synthetic and real-world data show that our algorithms are more accurate than the state-of-the-art methods, and are orders of magnitude faster.Comment: 16 pages, 5 figures, Appears in Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), Phoenix, Arizona, USA, pp. 2016--2022, 201

    Accelerated Variance Reduced Stochastic ADMM

    Full text link
    Recently, many variance reduced stochastic alternating direction method of multipliers (ADMM) methods (e.g.\ SAG-ADMM, SDCA-ADMM and SVRG-ADMM) have made exciting progress such as linear convergence rates for strongly convex problems. However, the best known convergence rate for general convex problems is O(1/T) as opposed to O(1/T^2) of accelerated batch algorithms, where TT is the number of iterations. Thus, there still remains a gap in convergence rates between existing stochastic ADMM and batch algorithms. To bridge this gap, we introduce the momentum acceleration trick for batch optimization into the stochastic variance reduced gradient based ADMM (SVRG-ADMM), which leads to an accelerated (ASVRG-ADMM) method. Then we design two different momentum term update rules for strongly convex and general convex cases. We prove that ASVRG-ADMM converges linearly for strongly convex problems. Besides having a low per-iteration complexity as existing stochastic ADMM methods, ASVRG-ADMM improves the convergence rate on general convex problems from O(1/T) to O(1/T^2). Our experimental results show the effectiveness of ASVRG-ADMM.Comment: 16 pages, 5 figures, Appears in Proceedings of the 31th AAAI Conference on Artificial Intelligence (AAAI), San Francisco, California, USA, pp. 2287--2293, 201
    corecore